Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

A. Thiruvalluvar, ${ }^{\text {a }}{ }^{*}$ S. Silvarani, ${ }^{\text {a }}$ A. Vadivelu, ${ }^{\text {a }}$ K. Sithik $\mathrm{Ali}^{\text {b }}$ and V. R. Venkataraman ${ }^{\text {b }}$
 ${ }^{\text {a }}$ Department of Physics, Rajah Serfoji Government College, Thanjavur 613 005, Tamilnadu, India, and ${ }^{\mathbf{b}}$ Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Tiruchirappalli 620 020, India

Correspondence e-mail: athiru@eth.net

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.036$
$w R$ factor $=0.092$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Acetylbenzo[b]furan

The benzofuran moiety of the title molecule, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$, is planar and forms a dihedral angle of $6.69(9)^{\circ}$ with the attached acetyl group. In the crystal structure, symmetryrelated molecules are linked to form chains by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds involving the furan H atom and the O atom of the acetyl group. Adjacent chains are interlinked through weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the furan ring.

Comment

A convenient method of preparing 2-acetylbenzofuran, (I), from 2-hydroxybenzaldehyde and chloroacetone in the presence of KOH has been reported (Elliott, 1951). We have obtained (I) using a phase-transfer catalytic method. The present X-ray diffraction study was undertaken to understand the geometry of the benzofuran ring system and the effect of acetyl group substitution at position 2 of the furan ring.

(I)

In (I), the benzofuran moiety is planar and the acetyl group is slightly twisted about the $\mathrm{C} 2-\mathrm{C} 21$ bond, as seen from the torsion angles $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 21-\mathrm{O} 21=5.9(3)^{\circ}$ and $\mathrm{C} 3-\mathrm{C} 2-$ $\mathrm{C} 21-\mathrm{C} 22=6.7(3)^{\circ}$. The geometry of the benzofuran ring is comparable to that found in ethyl 3-hydroxybenzo[b]furan-2carboxylate (Gould et al., 1998). In the solid state, the symmetry-related molecules are linked by C3H3 \cdots O21 $\left(\frac{3}{2}-x,-y,-\frac{1}{2}+z\right)$ hydrogen bonds to form chains along the c axis. Adjacent chains related by the symmetry operation $\left(-\frac{1}{2}+x, y, \frac{3}{2}-z\right)$ are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds involving the furan ring (Table 1), to form double-chain structures.

Experimental

The title compound was synthesized employing a phase-transfer catalytic technique. Salicylaldehyde ($6.12 \mathrm{ml}, 0.05 \mathrm{~mol}$) and chloroacetone $(4.0 \mathrm{ml}, 0.05 \mathrm{~mol})$ were added to benzene $(30 \mathrm{ml})$ and the reaction mixture was magnetically stirred for 3 h with 20% aqueous potassium carbonate $(20 \mathrm{ml})$ solution in the presence of a catalytic amount of tetrabutylammonium hydrogen sulfate (200 mg) as a phase-transfer catalyst. The resulting solid was filtered off and dried in air. Recrystallization from 1,4-dioxane afforded the crystals. The yield of the isolated product was 86%.

Received 7 February 2003
Accepted 24 February 2003
Online 7 March 2003

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids (Farrugia, 1997).

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=160.16$
Orthorhombic, Pbca
$a=8.3865$ (13) £
$b=18.273$ (4) \AA
$c=10.652(2) \AA$
$V=1632.4(5) \AA^{3}$
$Z=8$
$D_{x}=1.303 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
eter
$\omega-2 \theta$ scans
Absorption correction: none
1419 measured reflections
1419 independent reflections
907 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.092$
$S=1.03$
1419 reflections
109 parameters
H-atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10-15^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, light brown
$0.3 \times 0.3 \times 0.3 \mathrm{~mm}$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H3 \cdots O21 1^{i}	0.93	2.42	$3.190(2)$	140
C7-H7 ${ }^{\text {i }} \mathrm{Cg} 1^{\text {i }}$	0.93	2.89	$3.431(2)$	119

Symmetry codes: (i) $\frac{3}{2}-x,-y, z-\frac{1}{2}$; (ii) $x-\frac{1}{2}, y, \frac{3}{2}-z$.

Figure 2
The molecular packing of (I), viewed down the a axis (Spek, 1990).

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with isotropic displacement parameters. The methyl group was found to be disordered over two positions rotated from each other by 60°. It was refined as an idealized disordered methyl group.

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: MolEN (Fair, 1990); data reduction: MolEN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

KS thanks the UGC, India, for partial financial assistance.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Elliott, E. D. (1951). J. Am. Chem. Soc. 73, 754.
Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gould, R. O., Guest, M. F., Joswig, J.-O., Palmer, M. H. \& Parsons, S. (1998). Acta Cryst. C54, 1951-1954.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

