Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A. Thiruvalluvar,^a* S. Silvarani,^a A. Vadivelu,^a K. Sithik Ali^b and V. R. Venkataraman^b

^aDepartment of Physics, Rajah Serfoji Government College, Thanjavur 613 005, Tamilnadu, India, and ^bPost Graduate and Research Department of Chemistry, Jamal Mohamed College, Tiruchirappalli 620 020, India

Correspondence e-mail: athiru@eth.net

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å Disorder in main residue R factor = 0.036 wR factor = 0.092 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Acetylbenzo[b]furan

The benzofuran moiety of the title molecule, $C_{10}H_8O_2$, is planar and forms a dihedral angle of $6.69 (9)^{\circ}$ with the attached acetyl group. In the crystal structure, symmetryrelated molecules are linked to form chains by C-H···O intermolecular hydrogen bonds involving the furan H atom and the O atom of the acetyl group. Adjacent chains are interlinked through weak $C-H\cdots\pi$ interactions involving the furan ring.

Comment

A convenient method of preparing 2-acetylbenzofuran, (I), from 2-hydroxybenzaldehyde and chloroacetone in the presence of KOH has been reported (Elliott, 1951). We have obtained (I) using a phase-transfer catalytic method. The present X-ray diffraction study was undertaken to understand the geometry of the benzofuran ring system and the effect of acetyl group substitution at position 2 of the furan ring.

In (I), the benzofuran moiety is planar and the acetyl group is slightly twisted about the C2-C21 bond, as seen from the torsion angles $O1-C2-C21-O21 = 5.9 (3)^{\circ}$ and $C3-C2-C21-O21 = 5.9 (3)^{\circ}$ $C21-C22 = 6.7 (3)^{\circ}$. The geometry of the benzofuran ring is comparable to that found in ethyl 3-hydroxybenzo[b]furan-2carboxylate (Gould et al., 1998). In the solid state, the symmetry-related molecules are linked by C3- $H3 \cdots O21(\frac{3}{2}-x, -y, -\frac{1}{2}+z)$ hydrogen bonds to form chains along the c axis. Adjacent chains related by the symmetry operation $\left(-\frac{1}{2} + x, y, \frac{3}{2} - z\right)$ are linked by C-H··· π hydrogen bonds involving the furan ring (Table 1), to form double-chain structures.

Experimental

The title compound was synthesized employing a phase-transfer catalytic technique. Salicylaldehyde (6.12 ml, 0.05 mol) and chloroacetone (4.0 ml, 0.05 mol) were added to benzene (30 ml) and the reaction mixture was magnetically stirred for 3 h with 20% aqueous potassium carbonate (20 ml) solution in the presence of a catalytic amount of tetrabutylammonium hydrogen sulfate (200 mg) as a phase-transfer catalyst. The resulting solid was filtered off and dried in air. Recrystallization from 1,4-dioxane afforded the crystals. The yield of the isolated product was 86%.

Received 7 February 2003 Accepted 24 February 2003 Online 7 March 2003

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids (Farrugia, 1997).

Mo $K\alpha$ radiation

reflections

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 (2) K

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = 0 \rightarrow 9$

 $k = 0 \rightarrow 21$

 $l = 0 \rightarrow 12$

Block, light brown

 $0.3 \times 0.3 \times 0.3$ mm

2 standard reflections

every 100 reflections

intensity decay: none

 $\theta = 10 - 15^{\circ}$

Cell parameters from 25

Crystal data

$C_{10}H_8O_2$ $M_r = 160.16$ Orthorhombic, Pbca a = 8.3865 (13) Åb = 18.273 (4) Å c = 10.652 (2) Å $V = 1632.4 (5) \text{ Å}^3$ Z = 8 $D_x = 1.303 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: none 1419 measured reflections 1419 independent reflections 907 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0348P)^2]$		
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 0.2715P]		
$wR(F^2) = 0.092$	where $P = (F_o^2 + 2F_c^2)/3$		
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$		
1419 reflections	$\Delta \rho_{\rm max} = 0.10 \ {\rm e} \ {\rm \AA}^{-3}$		
109 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ Å}^{-3}$		
H-atom parameters constrained			

Table 1

. 8

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C3 - H3 \cdots O21^{i} \\ C7 - H7 \cdots Cg1^{ii} \end{array}$	0.93	2.42	3.190 (2)	140
	0.93	2.89	3.431 (2)	119

Symmetry codes: (i) $\frac{3}{2} - x$, -y, $z - \frac{1}{2}$; (ii) $x - \frac{1}{2}$, y, $\frac{3}{2} - z$.

Figure 2

The molecular packing of (I), viewed down the *a* axis (Spek, 1990).

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with isotropic displacement parameters. The methyl group was found to be disordered over two positions rotated from each other by 60°. It was refined as an idealized disordered methyl group.

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: MolEN (Fair, 1990); data reduction: MolEN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

KS thanks the UGC, India, for partial financial assistance.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Elliott, E. D. (1951). J. Am. Chem. Soc. 73, 754.

Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Gould, R. O., Guest, M. F., Joswig, J.-O., Palmer, M. H. & Parsons, S. (1998). Acta Cryst. C54, 1951-1954.

- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.